326 research outputs found

    Thalamic Atrophy in Huntington's Disease Co-varies with Cognitive Performance: A Morphometric MRI Analysis

    Get PDF
    The pattern of motor, behavioral and cognitive symptoms in Huntington's disease (HD) implicates dysfunction of basal-ganglia-thalamo-cortical circuits. This study explored if cognitive performance in HD is correlated with localized cerebral changes. Psychomotor functions were investigated by verbal fluency, Stroop color word and Digit Symbol tests in 44 HD patients and 22 controls. Three-dimensional magnetic resonance imaging (MRI) data were analyzed with regard to regional gray matter changes by use of the observer-independent whole-brain-based approach of voxel-based morphometry (VBM). Using statistical parametric mapping, the MRI data of the HD patients were analyzed in an ANCOVA including the individual results of the neuropsychological tests. Besides striatal areas, symmetrical regional atrophy of the thalamus was found to co-vary significantly with cognitive performance (P < 0.001, corrected for multiple comparisons). In particular, thalamic subnuclei projecting to prefrontal areas (dorsomedial subnucleus) and connected to the striatum (centromedian/parafascicular and ventrolateral nuclear complex) displayed volume loss, in agreement with neuropathological studies. These results suggest that thalamic degeneration contributes in an important way to the impairment of executive function in early HD. Patients who are impaired in executive tests display structural double lesions of the basal-ganglia-thalamo-cortical circuitry both at the striatal and at the thalamic leve

    MRI-based quantification of adipose tissue distribution in healthy adult cats during body weight gain

    Get PDF
    The incidence of obesity in pet population increased over the last decades. Cats have been suggested as model for human obesity because of similar co-morbidities as diabetes and dyslipidaemia. Aim of this study were to quantify the distribution of visceral and subcutaneous adipose tissue (VAT, SAT respectively) in healthy adult cats during feeding-induced body weight (BW) gain by MRI, and to correlate it to the increased hepatic fat fraction (HFF). Cats received a commercial dry food ad libitum for 40 weeks and were longitudinally scanned three times. VAT and SAT were determined from Dixon MRI data by a dedicated software solution (ATLAS, established in human and rodents). HFF was quantified from a commercially available sequence. At both individual and group level, normalized adipose tissue volumes significantly increased longitudinally, with median VAT/SAT ratio always &lt; 1. With increased BW, more than proportional increased total adipose tissue was observed together with more than proportional increased HFF. HFF is disproportionately high in overweight cats compared to SAT and VAT accumulation in the 40 weeks observation period. Quantitative unbiased MRI examination of different body fat components is useful in longitudinal monitoring of obesity in cats

    Toward diffusion tensor imaging as a biomarker in neurodegenerative diseases: technical considerations to optimize recordings and data processing

    Get PDF
    Neuroimaging biomarkers have shown high potential to map the disease processes in the application to neurodegenerative diseases (NDD), e.g., diffusion tensor imaging (DTI). For DTI, the implementation of a standardized scanning and analysis cascade in clinical trials has potential to be further optimized. Over the last few years, various approaches to improve DTI applications to NDD have been developed. The core issue of this review was to address considerations and limitations of DTI in NDD: we discuss suggestions for improvements of DTI applications to NDD. Based on this technical approach, a set of recommendations was proposed for a standardized DTI scan protocol and an analysis cascade of DTI data pre-and postprocessing and statistical analysis. In summary, considering advantages and limitations of the DTI in NDD we suggest improvements for a standardized framework for a DTI-based protocol to be applied to future imaging studies in NDD, towards the goal to proceed to establish DTI as a biomarker in clinical trials in neurodegeneration

    MRI-Based Mapping of Cerebral Propagation in Amyotrophic Lateral Sclerosis

    Get PDF
    Neuropathological studies revealed the propagation of amyotrophic lateral sclerosis (ALS) in a sequence of four separate disease-related regional patterns. Diffusion tensor imaging (DTI)-based analysis was established for the individual mapping of sequential disease spreading in ALS as the in vivo transfer to neuroimaging. The aim of this review is to summarize cross-sectional and longitudinal results of these technical approaches in ALS as an in vivo tool to image ALS propagation stages. This concept was also applied to restricted phenotypes of ALS, e.g., lower motor neuron disease (LMND) or primary lateral sclerosis (PLS). In summary, the regional disease patterns in the course of ALS have been successfully mapped by DTI in vivo both cross-sectionally and longitudinally so that this technique might have the potential as a read-out in clinical trials

    Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease

    Get PDF
    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference;(b) an automatically classified UPDRS;and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation- supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team

    Changes in cortical activation during mirror reading before and after training: an fMRI study of procedural learning

    Get PDF
    The neural correlates of procedural learning were studied using functional magnetic resonance imaging (fMRI) and the mirror reading paradigm. The aim of the study was to investigate a presumed learning-related change of activation in cortical areas that are involved in the performance of a nonmotor skill. Changes in cortical blood oxygenation contrast were recorded in 10 healthy subjects while they alternatively read visually presented single mirror script words and normal script words. Responses in naive subjects were compared to those acquired after training of mirror script reading. The acquisition volume included the motor and premotor cortex, the parietal lobe and the occipital lobe including its inferior aspects. Striate and extrastriate visual areas, associative parietal cortex and the premotor cortex were bilaterally active during normal and mirror script reading. Significantly stronger activation during mirror reading was seen in BA7 and 40 (parietal associative cortex) and in BA6 (corresponding to the frontal eye fields). Simultaneous eye movement recordings indicated that activation in BA6 was related to processing components other than saccade frequency. After training, BA6 and BA7 exhibited a decrease of activation during mirror reading that significantly exceeded nonspecific changes observed in the normal script control condition. The present findings confirm the hypothesis of practice-related decrease of activation in task-related cortical areas during nonmotor procedural learning

    Electrophysiological Assessment of the Deltoid Muscle after Minimally Invasive Treatment of Proximal Humerus Fractures - A Clinical Observation

    Get PDF
    The minimal anterolateral acromial approach offers a less invasive access to the proximal humerus. Functional impairment following this procedure may be caused by paresis of the deltoid muscle as a result of iatrogenic injury to the axillary nerve. It was addressed whether electromyography (EMG) of the deltoid muscle gives evidence for an axillary nerve lesion in association with the minimal anterolateral acromial approach

    Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information on anatomical connectivity in the brain by measurements of the diffusion of water in white matter tracts lead to quantification of local tract directionality and integrity.</p> <p>Methods</p> <p>The combination of connectivity mapping (fibre tracking, FT) with quantitative diffusion fractional anisotropy (FA) mapping resulted in the approach of results based on group-averaged data, named tractwise FA statistics (TFAS). The task of this study was to apply these methods to group-averaged data from different subjects to quantify differences between normal subjects and subjects with defined alterations of the corpus callosum (CC).</p> <p>Results</p> <p>TFAS exhibited a significant FA reduction especially in the CC, in agreement with region of interest (ROI)-based analyses.</p> <p>Conclusion</p> <p>In summary, the applicability of the TFAS approach to diffusion tensor imaging studies of normal and pathologically altered brains was demonstrated.</p
    • …
    corecore